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Rating and Ranking of Multiple-Aspect 
Alternatives Using Fuzzy Setst 

SJOERD M. BAAS* and H U I B E R T  K W A K E R N A A K *  

Fuzzy sets theory may be used to solve multiple-attribute decision problems under 
uncertainty. 
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multiple-objective decision problems. 

Snmmm'y--A method is proposed to deal with multiple- 
alternative decision problems under uncertainty. It is 
assumed that all the alternatives in the choice set can be 
characterized by a number of aspects, and that information is 
available to assign weights to these aspects and to construct a 
rating scheme for the various aspects of each alternative. The 
method basically consists of computing weighted final ratings 
for each alternative and comparing the weighted final ratings. 
The uncertainty that is assumed to be inherent in the 
assessments of the ratings and weights is accounted for by 
considering each of these variables as fuzzy quantities, 
characterized by appropriate membership functions. Ac- 
cordingly, the final evaluation of the alternatives consists of a 
degree of membership in the fuzzy set of alternatives ranking 
first. A practical method is given to compute membership 
functions of fuzzy sets induced by mappings, and applied to 
the problem at hand. A number of examples are worked out. 
The method is compared to another one proposed by Kahne 
who approaches the prc-blem probabilistically. 

1. INTRODUCTION 

IT FREQUENTLY happens  that  an individual, group, 
or communi ty  is faced with the problem of 
choosing among alternatives.  Typical ly,  many  
aspects  are to be considered,  to which moreove r  
varying degrees of  impor tance  are at tached.  If  
the number  of al ternatives and the number  of  
aspects  are large, a very  complex-looking 
problem may  arise. 

There  exists a large amount  of  literature on 
this problem,  dating back  to the fundamental  
work  of Fishburn[1] and earlier. Overv iews  of 
methods  for  multi-attribute decision making are 
given by MacCrimmon[2] ,  yon Winterfeld and 
Fischer[3],  and also Roy[4].  

In the present  paper  we restrict  ourselves to a 
s imple-minded and wel l -known approach,  which 
of ten is resor ted to. First, the aspects  
a,, a2 . . . . .  a, that  enter into the evaluation of 
each alternative are identified. I t  will be assumed 
that these aspects  are relevant  for  all al- 
ternatives.  The various al ternatives will be 
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denoted as A , , A :  . . . . .  Am. Then for a given 
alternative A,, the relative merit  of aspect  aj is 
assessed by  a rating, denoted as r,j. Fur thermore ,  
the relative importance  of each aspect  is 
assessed by  a weighting coefficient, say wj for 
aspect  aj. Then alternative A, receives  the 
weighted average  rating 

• wjrtj 

i=t 

(i) 

Finally, the relevant  merits of the various 
al ternatives are judged by  comparing and rank- 
ing the final ratings rl, r2 . . . . .  Fro. In this approach,  
it is assumed that  the utilities exper ienced on the 
set of al ternatives allow for  numerical  represen-  
tations on the ordinal scale of real numbers  in the 
sense that  larger values uniquely correspond to 
higher utilities. Fur thermore ,  the additive re- 
presentat ion implies independence of the utilities 
involved. A theoretical  approach,  giving fun- 
damental  conditions for the construct ion of 
order preserving additive representat ion of 
utilities on a set of mult iple-aspect  al ternatives is 
described by Fishburn[1].  

Very often,  this rating and ranking method is 
used in a situation which does not allow a more  
structured decision approach.  Such problems are 
usually character ized by  a lack of object ive  and 
reliable information.  If  in such a situation the 
described rating and ranking method is used, 
quite f requent ly  there will be doubt  and uncer- 
tainty about  the exact  values that are to be 
assigned to the various ratings and weights. 

In two recent  papers ,  Kahne  [5], [6] p roposes  a 
method to account  for  these uncertainties.  
Kahne ' s  approach  is to represent  the uncertain- 
ties by  allowing each variable (rating or weight) 
to be a random variable,  whose distribution is 
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determined by the information that is available. 
Thus, for  example,  if the ratings assume values 
in the interval [0, 1], an assessment of 'good'  for  
a certain aspect could be represented by as- 
suming that the corresponding rating is a random 
variable, uniformly distributed on the interval 
[0.7, 0.9]. 

In Kahne 's  procedure,  all weights and ratings 
are taken to be independent random variables, 
usually but not necessarily uniformly distributed. 
In this f ramework,  the final ratings ~,, ~ . . . . .  ~ 
also become random variables. t  In the last stage 
of the evaluation, the various alternatives are 
compared by selecting the alternative that has 
the highest probability of being first if the final 
ratings are ranked in order of descending 
magnitude. Kahne uses a Monte Carlo method to 
determine this alternative. 

It is the content ion of this paper that the sort 
of uncertainty that comes into play here is better  
represented by the notion of fuzziness than that 
of chance. The idea of fuzziness is explained in a 
series of papers by Zadeh, e.g. [7-9]; recently a 
book has appeared on the subject[10]. 

It is a simple exercise in the theory of fuzzy  
sets to reformulate Kahne 's  basic procedure.  
Section 2 of the paper is devoted to this. Kahne 's  
ideas are somewhat  elaborated by introducing 
measures that make it explicit how much better  
the preferred alternative is than the other 
alternatives, and how the initial uncertainties 
manifest  themselves in the final evaluation. 

In Section 3 some mathematical results are 
stated concerning the membership functions of 
fuzzy  sets induced by a mapping. The proof  is 
given in the Appendix. It is shown how this result 
greatly facilitates the computat ion of the mem- 
bership functions that arise in Section 2. 

Section 4 is devoted to the presentation of a 
number of examples,  and includes a comparison 
with the results of Kahne 's  method. Section 5 
contains the conclusions of the paper. 

indicated as S = (X,/zs), where X is the space on 
which the fuzzy  set is defined, and ~ ( x ) ,  x E X, 
the membership function of the set. The only 
concepts that will be used are product  fuzzy sets, 
fuzzy  sets induced by mappings, and conditional 
fuzzy  sets. 

First, a comment  is in order. The rules that will 
be applied in this paper for  defining product  
fuzzy  sets and composing conditional fuzzy sets 
are based on the minimum rule. Although a case 
can be made for other rules, in particular the 
product  rule, e.g. Gaines [ l l ], in this paper 
attention will be restricted to the minimum rule, 
which is considered in most of the literature on 
fuzzy  sets. 

As before,  let A,,A2 . . . . .  Am denote the 
alternatives that are compared and a,, a2 . . . . .  a, 
the different aspects that the alternatives are to 
be judged upon. It is assumed that the fuzzy  
rating of aspect a~ of alternative A, is represen- 
ted by a membership function/xR,j(r,j), where r,~ 
takes its values on the real line R. Similarly, the 
relative importance of aspect a~ will be a fuzzy 
variable as well, represented by the membership 
function /~wj(wj), where also w~ takes its values 
on R. All membership functions will take values 
in the interval [0, 1]. Furthermore,  we shall 
normally assume that all membership functions 
have finite supports, that the membership func- 
tions /zwj, j = 1, 2 . . . . .  n, have their supports in 
the positive real line, and that all membership 
functions assume the value 1 for at least one 
value of their argument. 

In order to determine the fuzzy evaluation of 
alternative A, based on the fuzzy ratings and 
weights, consider the function g, mapping R ~" 
into R, defined by 

~_~ wjrj 
g(z) = J~ , 

wj 
i = l  

(2) 

2. EVALUATION OF ALTERNATIVES USING 
FUZZY SETS 

For  the basic notions of the theory of fuzzy  
sets we refer  to Zadeh's  papers. Either of the 
articles[7], [8] or [9] contains all the material 
needed in this paper. A fuzzy  set will be 

tKahne uses the non-normalized weighted final rating 
F, = ~jwjrtj, where the weights do not necessarily add up to 
unity, contrary to the usual practice, e.g. Roy[6]. For this 
reason we prefer the average weighted rating (1). Using 
normalized weights has the desirable property that if the 
ratings r,,, r,2 . . . . .  r,, all are equal, the final weighted rating F 
is independent of the weights and equals the common value 
of the rating. 

where z = (Wl, w2, . . . ,  w,, r~, r2 . . . . .  r~). On the 
product  space R 2n we define a membership 
function/~z,, given by 

tXz~(Z)= [j=~ p~wj(Ws)] A[k~ tZR~k(rk) ]. (3) 

The symbol A, which is used both in prefix and 
infix notation, denotes the operation of taking the 
minimum. Through the mapping g: R ~n ---R, the 
fuzzy  set z = ( R  ~n, ~z,) induces a fuzzy set 
R, = (R, V~), with membership function 

/xa,(~) = sup ~z,(Z), ~ E R. (4) 
z :  g ( z ) = r  
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This membership function characterizes, in a 
fuzzy sense, the final rating of alternative A,  The 
computation o f /z , t  is discussed in Section 3. 

It is interesting to note that if the assumptions 
stated in the last sentence of the second 
paragraph of this section are satisfied, we have 
the property that if all aspects at receive the 
same fuzzy ratings, the final fuzzy rating is equal 
to this rating, independent of the weights; 
compare also the footnote in Section 1. This 
means that if / x , ~ , ( r ) = / x , ~ ( r ) = . . . = t x ~ . ( r ) =  
/x,t(r) for all r ~ R ,  then /xa,(r)=/~,t(r) for all 
r ~ R. The proof of this assertion is left to the 
reader. 

Once the membership functions /~,~t, i =  
1,2 . . . . .  m, of the fuzzy final ratings have been 
established, the question arises how to compare 
these ratings, and how to select the preferred 
alternative. Suppose for the moment that the 
alternatives A , , A :  . . . . .  A, .  have received non- 
fuzzy final ratings ~,, ~ . . . . .  ~... Then a very 
plausible method to determine the preferred 
alternatives is to select the alternatives that have 
the highest final ratings. This procedure cor- 
responds to determining the set 
{i ~ I: ~/> ~, Vj ~ I}, where I ={1,2 . . . .  m}. 

If the final ratings are fuzzy, this ordinary set 
is replaced with a fuzzy set (I, Ix~), whose 
membership function may be determined as 
follows. We first define the conditional fuzzy set 
(I, tz,~a), with membership function 

f l  if ~/> ~j, Vj  E I, 
~tla(ilPt, F2, 

. . . .  Pro) = ~ 0 otherwise. (5) 

This conditional membership function reflects 
that for a given combination of final ratings 
~,, ~2 . . . . .  F,, the i-th alternative belongs to the set 
of alternatives ranking first if and only if ~t I> ~ 
for all j E I. Note that the conditional fuzzy set 
defined by this conditional membership function 
is not really fuzzy. Now on R" the fuzzy final 
ratings define a fuzzy set R =  (R m, /~)  with 
membership function 

/xa(P,,  ~2 . . . . .  P,.) = ~ tz~,(~t). (6)  
i = l  

The fuzzy set (R",/x~) and the conditional fuzzy 
set (I,/-~,l~) together induce a fuzzy set (I,/~,) 
with membership function 

u , ( i ) =  sup ~z,~il~,, r2 . . . . .  e ~ )  
~1, P 2 , . . . ,  ~m 

A/xa (F,, P2 . . . . .  F,.). (7) 

This expression may be rewritten in the form 

m 

/~,(i) = sup /~,t(rj). i E I. (8) 
rl,~2 . . . . .  Pro; j - I  

Pi~.Pi, Vj ~ I .  

The computation of this membership function is 
also discussed in Section 3. 

The membership function /x~ may be inter- 
preted as follows. If for a given i the function 
tz1(i) assumes a certain value, say 0.8, then this 
number characterizes the extent to which al- 
ternative At is the best alternative. 

It is noted that under the assumptions listed at 
the end of the second paragraph of this section, 
there always exists at least one alternative A~ 
such that i has membership 1 in the set (I,/-~D. 
This alternative corresponds to the value of i 
which maximizes 

~_a W t* rt~'f 
rt* i:  t = - - ,  (9) 

~ W j *  
j=l  

where w* and r~* are the arguments for which/xwj 
and /~,tj, respectively, assume the value 1. For 
simplicity we assume here that for each i and j 
there is exactly one value of the argument for 
which /~wj and /-~,0, respectively, assume the 
value 1. 

The preceding result makes it of course very 
simple to establish the order of preference of the 
alternatives, that is to say, the preference order 
having degree of membership one. This order of 
preference, together with the final ratings L*, 
i =  1,2 . . . . .  n, generating it, does not make it 
clear, however, whether there exist perhaps 
other preference orders that are almost as 
acceptable, in view of the uncertainty present. 
Such information may be obtained from the 
membership function/x~. 

A drawback of using the membership function 
/z, to decide which is the best alternative is that it 
gives only partial information about how much 
better the best alternative is than the other 
alternatives. Also, it may happen, as indicated in 
the examples in Section 4, that there is more than 
one alternative with membership 1 in the fuzzy 
set (L/~r). In the case of non-fuzzy final ratings 
rt, ~2 . . . . .  ~m, the number 

_ I 

P~--r~ m 1~=, (io) 

where i is fixed, is a measure of the preferability 
of alternative A, over the other alternatives. The 
expression (10) defines a mapping h, :R m ~ R .  In  
case the final ratings are fuzzy, the mapping h, 
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induces a fuzzy set P~ =(R,/~,,,) with mem- 
bership function 

Ixe,(P) = sup Ix~(r,, r2 . . . . .  L.), p @ R, 
~1, ~2 . . . . .  ~m : 

h i ( r h  F2 . . . .  Fm)= p 

(11) 

with Ix~ as defined in (6). The membersh ip  
funct ion Ixp~ may  be used to judge the 
preferabil i ty of alternative A, over  the other 
alternatives. 

This section may  be summarized  as follow s. The 
membersh ip  funct ion Ix~ character izes  the fuzzy  
final rating of alternative A~ ; it follows f rom (4), (2), 
and (3). The membersh ip  function Ix, defines the 
extent  to which each alternative belongs to the set 
of al ternatives ranking first; it may be determined 
f rom (8). Finally, the membersh ip  function Ix~,,, 
specified by (11), (6), and (10), may be used to 
ascertain to what  extent  alternative i is preferred 
over  the other alternatives.  

In Section 3, we describe how these mem-  
bership functions may be evaluated.  In Section 4, 
some examples  are given illustrating the pro- 
posed method of evaluating fuzzy  alternatives.  

3. EVALUATION OF MEMBERSHIP FUNCTIONS 

In the preceding section, several  of the 
membersh ip  functions that occur  are obtained 
according to a formula  of the form 

Ixr(y) = sup A Ix,(x,), y ER, (12) 
x E R n : f [ x  ~ V  i = l  

where Ix~(x~), i =  1,2 . . . . .  n, are given mem-  
bership functions,  f is a function mapping R" into 
R, and x = (x,, x~ . . . . .  x,). In this section we shall 
state some results that will greatly facilitate the 
computat ion of the membersh ip  function/.tv. The 
first result will be given in a restricted form, 
which could be relaxed, at the expense,  however ,  
of a considerable loss of simplicity in the 
presentation.  In the following it will be assumed 
that the membersh ip  functions IX,, i = 1, 2 . . . . .  n, 
are piecewise continuously differentiable func- 
tions mapping R into R, each bounded,  non- 
negative and with finite support.  The function f 
will be assumed to be a continuously differen- 
tiable mapping of R ° into R. At the points where 
the respect ive derivat ives exist, we shall denote 

Ix'~(x,) -- dIx,(x,) af(x,, x._ . . . . .  x°) 
dx, ' f,(x) = Ox, (13) 

Theorem !. Suppose that the point )~ = 
0~ , ,~  . . . . .  ;¢.) ER"  satisfies the following con- 
ditions: 

(i) The derivatives Ix',(£) and J;(£), i ..... 
1,2 . . . . .  n, all exist, and are all nonzero.  

(ii) Ix,(£,) = ~(~2) = . . . =  ~,,(~.). 
(iii) Ix'~(Yc~)lf,(Yc) has the same sign for each 

i E { 1 , 2  . . . . .  n}. 

Then $ is a strict relative maximum point of the 
mathematical  programming problem 

maximize A Ix,(x,), subject  to f ( x ) =  ~, 

where 

= f0~). 

The proof  of this theorem is given in the 
Appendix.  Before stating the second theorem,  
we define the number  M and the integer set L as 
follows 

M = sup A Ix,(x,), L = {i: sup Ix,(x,) = M}. 
x E R  n i - - I  x i ~ R  

We then have the following result, which may be 
used in determining the values of y where the 
membersh ip  function Ix~(y) assumes its maxi- 
mum. 

Theorem 2. Suppose that the point $ = 
(~,, ~: . . . . .  J , )  ~ R" satisfies the following con- 
ditions: 

(i) 

(ii) 

IX, (£)  = M for each i E L. 

IX~(~,)/> M for each i ~  L. 

Then £ is a global maximum point of the 
mathematical  programming problem 

maximize A Ix,(x~), subject  to f ( x )=  Y, 
i I 

where 

9 = f(~). 

Also this theorem is proved in the Appendix.  
We finally state the following result, which may 
be used to establish the regions where the 
membersh ip  function Ixy(y) assumes the value 
zero. 

Theorem 3. Let  S C R" denote the support  of 

the joint membersh ip  function :~ Ix,(x~), i.e., 

S = {x E R" : Ix~(x,) > 0, i = 1,2 . . . . .  n }. Define 

ymln = in f f (x) ,  ym,~ = supf (x) .  
x C S  x E S  

Then if Ix~ is defined as in (12), Ixy(y)=  0 if 
y < Ym~n or y > y . . . .  If each of the supports  of the 
membersh ip  functions Ix,, i =  1,2 . . . . .  n, is an 
interval, Ixr(y) > 0 for ym~. < y < y . . . .  Again we 
refer  to the Appendix for the proof.  



Rating and ranking of multiple-aspect alternatives using fuzzy  sets 51 

We shall now demonstrate  how to use 
Theorem 1 in computing membership functions 
of the form (12). Suppose that we wish to 
determine the value or values of y for  which 
txv(y) assumes a given value, say /-~o. Let  
( $ , , ~  . . . . .  ~,) be the point for  which the 
supremum in (12) is assumed. We shall look for 
such points satisfying condition (ii) of Theorem 
1. Let  us therefore  determine for each i the 
values of x, for  which ~,(x,) =/~o as illustrated in 
Fig. 1. Suppose that g',(x,) # O, i = 1, 2 . . . . .  n, 
in all the points thus obtained, situation (a) of 
Fig. 1. Let  L, ={x , :  lx , (x , )= go}, i = 1 , 2  . . . . .  n. 

! o1,o, . . . .  

Xll xl 3 Xl~ x21 x23 X24 X22 
X -'---t-" 

Fro. !. Determinat ion  of  membership funct ions. (a) Si tuat ion 
corresponding to Theorem 1. L ,  = {x,, ,  x,~}, L2 = {xn,  x2=}. (b) 
Si tuat ion corresponding to Theorem 2. L = {1}, L ,  = {xt~}, and 

L~ = {x: x E [x~,, x~,l}. 

Now determine all combinations of points 
~,,$2 . . . . .  ~,, with ~ L , ,  i = 1 , 2  . . . . .  n, such 
that the first and third requirements of Theorem 
1 are satisfied. Substitution of each of these 
combinations of points into f gives us the values 
o f  y = f(J¢, ,  X2 . . . . .  J¢.) for which the mathemati- 
cal programming problem considered has 
(~,, ~ . . . . .  ~,) as a strict relative maximum point. 

Theorem 2 applies in case ~o = M, situation (b) 
of Fig. 1. Then for each i we determine the set L, 
defined by 

~{x, : i~,(x,) = M} if i E L, 
L, = L{x, : tx,(x,) ~ M }  if i ~  L.  

Then we can determine the values of ~ for which 
/zY(33) =/Xo by the substitution y = 
f(2,,  ~ . . . . .  ~.), where ~, ~ L ,  i ~ {1, 2 . . . . .  n}. 
The application of Theorem 3 to determine the 
regions where/x~,(y) = 0 is straightforward. 

Since Theorem 1 only gives sufficient con- 
ditions for  relat ive maximum points, the danger 
exists that the values of # obtained by  the 
method described above do not satisfy/z~,(9) = 
~o. It seems difficult to establish sufficiently 
general conditions that exclude this possibility, 
however.  

The method as described finds a very  simple 
application in the calculation of the mem- 
bership function of the variable 

pl = x, - ~  x~, (14) 
m 1j=, 

j# i  

where the membership functions g, of the 
variables x,, i = 1, 2 . . . . .  m, are given. This is a 
problem we met in the preceding section. In this 
case we have for the partial derivatives ~, 
~ = 1 , 2  . . . . .  m, 

- [1 / (  - 1)] f o r j ~ i ,  
3~ = for j = i. (15) 

This means that in order to compute the values 
of p, for  which ~ p , ( p , ) =  ~Xo, with ~o a given 
number,  we have to find numbers ~ ,  ;2 . . . . .  ~,. 
such that /z,($,) = tz2($2) = . . .  =/x,($m) = ~o, 
and such that/x'j($~), j = 1,2 . . . . .  m, with j #  i, all 
have the same signs, while Ix'(;,) has the 
opposite sign. This is a very simple task. Once 
such a combination $,, ;2 . . . . .  ~,~ has been found, 
the number #, such that p-P,(#3 =/Zo follows by 
substituting the numbers ; , ,  ~ . . . . .  $ ,  into (14). 
Points satisfying Theorem 2 are even easier to 
find. 

It is slightly more complicated to determine 
the membership function of the variable 

~_~ w~r~ 
f - J='___L____, (16) 

where the membership functions #w, and W~, of 
the variables w, and r,, i =  1,2 . . . . .  n, respec- 
tively, are given. To apply the search procedure 
corresponding to Theorem 1 we need the partial 
derivatives fwj of the function defined by  (16) 
with respect  to w~ and the partial derivatives fo 
with respect  to r~. We have 

[ , ( r ,  w )  = w~ f~j(r, w )  = rj -_____~ 
n , 

Xw, 2w, 
i= l  i = ,  

(17) 

both for j = 1, 2 . . . . .  n, where r and w denote the 
vectors  (r,, r2 . . . . .  !",) and (w,, w2 . . . . .  w,), res- 
pectively,  and ~ is given by (16). In the cases we 
consider,  the weights w~ are always positive, so 
that also [4 is always positive. Thus, in order to 
compute  the values of ~ for which #~(~)= tzo, 
with #o a given number,  we have to find numbers 
r l ,  r2  . . . . .  rn and if,, if2 . . . . .  ~,,, such that/~R,(~,) = 
VLw,(~'~) =/~o for i =  1,2 . . . . .  n, and such that 
t~,(~,) and tx~,(ff) /(#~-f)  all have the same 
signs. The problem here is that the signs of 
latter quantities can only be established after all 
numbers ~,, ~2 . . . . .  #. if,, if2 . . . . .  ~,. have been 
determined. It is not difficult, however ,  to 
envisage trial and error methods where the 
critical numbers ~,, i.e., those close to ~, are first 
chosen tentatively and later adjusted. The case 



32 S . M .  BAAS and H. KWAKERNAAK 

n = 2 is particularly easy, because no matter 
what if, and if2 are, one has #, ~> ? and &~< ~ if 
?, > ?2, and vice-versa if ?, < ?2. 

We conclude this section by considering the 
problem of finding the membership function /~, 
introduced in the preceding section, given by (8). 
The theorems are of no avail here. The mem- 
bership function may systematically be deter- 
mined as follows. For the given value of i, 
determine the functions 

Jsu ..k(r ) 
fi,k(r) = [ -~/x,(r) 

and 

fo rk  = 1,2 . . . . .  m,k#i  

for k = i, 
(18) 

/2,(r) = rain/2,k(r), (19) 
k 

both for r E R. Then 

tx,(i) = sup/L(r).  (20) 
r 

4. EXAMPLES AND COMPARISON 
WITH KAHNE'S METHOD 

In this section a number of examples of 
applications of the method will be given. One of 
these examples will also be solved according to 
Kahne's  method[5], [6]. The results of the two 
methods will be compared. 

Example 1. For the first two examples we take 
two simple, related problems, where it is easy to 
interpret the results. We first consider a two- 
alternative, two-criterion problem, with ratings 
and weights as listed in Table 1. Inspection of the 
entries shows that most likely alternative 1 will 
be favored. Figure 2 gives the membership 
functions assigned to the ratings 'good' and 'fair', 
while Fig. 3 gives those for the weights 'very 
important'  and 'rather unimportant ' .  

Using the method outlined in the preceding 
section, it is not difficult to compute the 
membership function of the final ratings for the 
alternatives 1 and 2. The resulting membership 
functions/x~, and/x~2 are sketched in Fig. 4. It is 

I0 

bzf¢ 05 il 
06 08 I0 
f 

olr/ii 
i I 

04 06 08 I0 r 
FIG. 2. M e m b e r s h i p  f u n c t i o n s  for  the  ra t ings  'good '  and  ' fair ' .  
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~w 05 

"Very important" / 

08 10 0 

~ her unimportant" 
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w 

FIG. 3. M e m b e r s h i p  f u n c t i o n s  for  the  we igh t s  ' ve ry  impor t an t '  
and  ' r a the r  u n i m p o r t a n t ' .  

, , / / I L _ \  
0 0.2 04 06 08 I 0 

F 
FIG. 4. Example 1: Membership functions of final ratings. 

noted that the triangular shapes of the mem- 
bership functions are more or less preserved. 

A comparison of the membership functions of 
the final ratings shows that on the whole 
alternative 1 rates higher than alternative 2. This 
is confirmed by calculating the membership 
function/~x, which is given in Table 2. It is seen 
that the degree of membership of alternative 1 in 
the set of alternatives ranking first is l, but that 
alternative 2 still has a degree of membership 0.7 
in the same set. Fig. 5 shows the membership 
function of the preferability p, = r~-r2 of al- 
ternative 1 over alternative 2. This figure 
confirms that alternative l is generally but not 
universally preferred over alternative 2. 

TABLE 1. RATINGS AND WEIGHTS FOR EXAMPLE I 

ratings for ratings for 
weight alternative I alternative 2 

very good fair 
criterion 1 in.arrant 

rather fair good 
criterion 2 unimportant 
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A l t e r n a t i v e  2 
TABLE 2. EXAMPLE l:  THE MEMBERSHIP FUNCTION p~ 

i ~i(i) 

1 1 

2 0 . 7  

1.0 

o - ,  -o18 -o!6 -o14 - 
Pl 

0.2 0.4 06 0 8  I0  

FIG. 5. Example I: Membership function of preferability of 
alternative I over alternative 2. 
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FIG. 7. E x a m p l e  2: Membership functions of the final ratings of 
alternative 1 and 2. 

TABLE 4. EXAMPLE 2: THE MEMBERSHIP FUNCTION ~1 

i ~l(i) 

I I 

2 I 

Example 2. The second example is a per- 
turbation of Example l, as indicated in Table 3. 
The only difference with Example 1 is that the 
rating of criterion 1 for alternative 1 has been 
changed from 'fair' to 'not clear'. It is obvious 
that this rating will make it difficult to obtain a 
clear-cut comparison of the alternatives. The 
membership function of the rating 'not clear' is 
indicated in Fig. 6. It is seen that the inter- 
pretation of this rating is that every rating from 
0 to 1 is equally acceptable. Figure 7 gives a 
comparison of the membership functions of the 
final ratings of the two alternatives. Table 4 
shows that in this case both alternatives are full 
members of the set of alternatives ranking first, 
which means that either alternative is equally 

acceptable as the preferred alternative. Figure 8 
shows the membership function of the pre- 
ferability p, = ~ , -  f2 of alternative 1 over al- 
ternative 2, which confirms the prevailing in- 
difference. 

Example 3. This example is included to il- 
lustrate the effect of choosing different shapes 
of the membership functions assigned to the 
fuzzy ratings and weights. We consider the two- 
alternative, two-criterion problem of Example l, 
with the ratings and weights as indicated in 
Table 1. The uncertainties now are represented 
by rectangular membership functions, however, 
with the same supports as the triangular mem- 
bership functions of Figs. 2 and 3. 

Figure 9 displays the resulting membership 

I.O 

~R " Not c l e a r "  

IO 
r 

FIG. 6. Membership function for the rating 'not clear'. 

I.C 
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Pl 
0.2 0 4  0.6 0.8 10 

FIG. 8. Example 2: Membership function of the preferability of 
alternative ! over alternative 2. 

TABLE 3. RATINGS AND WEIGHTS FOR EXAMPLE 2 

ratings for ratings for 
weight alternative l alternative 2 

criterion l very good not clear important 

rather fair good 
criterion 2 unimportant 
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FIG. 9. E x a m p l e  3: M e m b e r s h i p  f u n c t i o n s  o f  the  final rat ings  o f  
a l t erna t ive s  1 and 2. 

functions of the final ratings of the two alter- 
natives. These membership functions are again 
rectangular, with the same supports as the, 
approximately triangular, membership functions 
of Fig. 4. The membership of both alternatives 
in the set of alternatives ranking first is l, which 
does not help much in deciding which alter- 
native is better. 

Figure 10 gives the membership function of 
the preferability p, = F, - F2 of alternative 1 over 
alternative 2. This graph indicates that alter- 
native 1 has advantages over alternative 2, but 
this indication is far less strong than in the case 
of the membership function sketched in Fig. 4. 
It appears that the consistent use of rectangular 
membership functions gives rise to considerable 
indecisiveness at the final evaluation stage. This 
example also shows that the results of the 
analysis are sensitive to the choice of the a 
priori membership function. 

Example 4. This example is a problem with 
more alternatives and more criteria. Table 5 
gives the various weights and ratings. A cursory 
inspection does not make it immediately clear 
which is the preferred alternative. Figs. I I 
and 12 depict the membership functions of the 
weight 'moderately important' and the ratings 
'very good', 'fair to good', and 'poor'. Figure 13 
gives the resulting membership functions of the 

IO 
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l 
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FIG. 10. E x a m p l e  3: M e m b e r s h i p  f u n c t i o n  o f  the  preferabi l i ty  
o f  a l t ernat ive  1 o v e r  a l t ernat ive  2. 
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FIG. 1 1. M e m b e r s h i p  f u n c t i o n s  o f  the  w e i g h t  ' m o d e r a t e l y  
important '  and  the  rat ing ' v e r y  good' .  
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FIG. 12. M e m b e r s h i p  f u n c t i o n s  o f  the  rat ings  'fair to  good'  and  
'poor' .  

final ratings. The memberships of the alter- 
natives in the set of alternatives ranking first 
appear in Table 6. We observe that alternative 2 
is the preferred alternative, closely followed by 
alternative I. The membership function of the 
preferability p2 = F2-~(F,+ F3) of alternative 2 
over the other alternatives is sketched in Fig. 14. It 

TABLE 5. RATINGS AND WEIGHTS FOR EXAMPLE 4 

ratings for alternative no. 

criterion 
weight l 2 3 

no. 

_ _  . - ~ zz i~i . - . . . . . . .  _ . . . . . . . .  

very very 
| important good good fair 

2 moderately 
important poor poor poor 

3 moderately fair to fair 
important poor good 

4 rather not fair 
unimportant good clear 



Rating and ranking of multiple-aspect alternatives using fuzzy sets 55 

A Itern2ati ve  

'°I /vT7 
I A ' t e r n3a'!~.?J//\' ' / ~ 1 - ~ t  e r n, Otive 

//,' !\i 
l , / / / ,  , \ X 

0 0 2  0 4  0 6  0 8  I 0  F 
FIG. 13. Example 4: Membership functions of the final ratings. 
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FIO. 14. Example 4: Membership function of the preferability 
of alternative 2 over alternatives 1 and 3. 

T A B L E  6 .  E X A M P L E  4: THE M E M B E R S H I P  F U N C T I O N  ~t 

i ~i(i) 

l 0 . 9 5  

2 1 

3 0 . 7 7  

is seen that alternative 2 is better, but not all that 
better, than the other alternatives. 

Application of Kahne' s method to example 4. 
In order to compare the present method to that 
of Kahne [5], [6], the problem of Example 4 has 
also been evaluated according to Kahne's 
method. The only deviation from Kahne's pro- 
posal is that the normalized final rating (1) has 
been employed rather than a non-normalized 
weighted final rating. All weights and ratings 
were taken to be random variables that are 
uniformly distributed with the same supports as 
the corresponding membership functions. The 
final ratings of the alternatives were computed 
according to the Monte Carlo method suggested 
by Kahne. This means that for each alternative, 
the various weights and ratings were sampled 
independently according to their respective 
probability distributions. From the sampled 
values, the final ratings were computed. His- 
tograms were made of the final ratings, and a 

record was kept of the number of times each 
alternative ranked first. Each final rating was 
sampled 500 times. Figure 15 gives the his- 
tograms of the final ratings. It is seen that al- 
though the supports of the density functions of 
the final ratings are the same as those of the 
corresponding membership functions in Fig. 13, 
the histograms taper off rather quickly at the 
higher end, resulting in a certain bias of the final 
ratings towards the lower side. This 
phenomenon was also noticed by Kahne. It is 
furthermore observed that the histograms, like 
the membership functions, show a considerable 
overlap. 

Table 7 displays the frequencies with which 
each alternative ranked first. It is seen that the 
probability of ranking first is much greater for 
alternative 2 than for the other alternatives. 
Accordingly, Kahne's method gives a much 
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FIG. 15. Example 4: Histograms of the final ratings of 
alternatives 1, 2, and 3 according to Kahne's method. 

TABLE 7. EXAMPLE 4: F R E Q U E N C I E S  WITH WHICH ALTER-  

NATIVES I ,  2 ,  AND 3 R A N K E D  FIRST ACCORI)ING TO K A H N E ' S  

METHOD 

f r e q u e n c y  w i t h  which  
i alternative i 

ranked first 

I O. 104 

2 0.844 

3 0.052 



56 S .M.  BAAS and H. KWAKERNAAK 

stronger indication of the preferability of al- 
ternative 2 over the other alternatives than the 
method proposed in the present paper. 

5. DISCUSSION AND CONCLUSIONS 

In this paper, a method has been proposed to 
deal with multiple-aspect decision making in the 
presence of uncertainty. The method is based 
on a straightforward rating and ranking method, 
where the weights and ratings, however, are 
represented as fuzzy variables. The method 
should be compared with a probabilistic method 
proposed by Kahne[5], [6]. We present a com- 
parative discussion of the two methods. 

Before doing this, it is desirable to clarify the 
difference between Kahne's and the present 
method, since it is known that fuzzy set theory 
may also be given a probabilistic interpretation, 
e.g. Gaines [l l], Watanabe[12]. To make the 
distinction clear, we shall describe two different 
models, the first of which gives rise to Kahne's 
method, while the second results in the fuzzy 
sets method. 

In both models we shall postulate a group of 
people, denoted as the c o m m i t t e e ,  dealing with 
the decision problem at hand. In the first model, 
we shall assume that individual committee 
members are questioned about the weights w, 
and the ratings r,j that have to be assigned to the 
various attributes and alternatives. The com- 
mittee members respond by stating numbers 
that in their opinion represent the weight or 
rating they are being interviewed about. These 
numbers are produced randomly, in agreement 
with the probability distributions imposed in 
Kahne's approach. Many committee members 
are interviewed, who each time respond with 
statistically independent numbers for the 
various weights and ratings. Whenever a com- 
plete set of weights and ratings for a given 
alternative is obtained, the corresponding final 
rating is calculated. Finally, statistics are com- 
piled on the frequency of occurence of final 
ratings and their relative order. 

This is the model for Kahne's method. Note 
that committee members are obliged to produce 
definite numbers representing the weights and 
ratings, although the choice of the particular 
number may be random. 

In the second model (Gaines[13]) which will 
be used for the fuzzy sets method, a different 
procedure is envisaged. Consider for instance 
one of the weights, wj. We shall postulate that 
the degree of membership ~wj(wj) of a particular 
value wj for the j-th weight is determined as the 
fraction of the committee that is willing to 
accept this value wj as a possibly correct value. 

Thus, tXwj(Wj) may be established by taking a 
poll. This procedure is repeated for all possible 
values of w, resulting in an experimentally es- 
tablished membership function gw,. All mem- 
bership functions ~wj and /x~,j occurring in the 
problem may be obtained in this fashion. The 
data thus acquired are processed according to 
the formalism of Section 2 of this paper, which 
may be explained as follows. 

For a given set of weights w , ,  w2 . . . . .  w, and 
ratings r,,,  r,2 . . . . .  r,, (with i fixed) the degree of 
membership that is assigned to the joint oc- 
currence of these numbers according to (3) is 

[~,/xwj(wj)] A [/~,/.t~,(r,)]. (21) 

This means that the joint occurrence is ac- 
ceptable to the full extent to which the least 
acceptable individual occurrence is acceptable. 
Gaines terms this fuzzy logic[11]. An alternative 
approach would be to assume statistical in- 
dependence of the individual occurrences, and 
assign the degree of membership 

j = l  j - I  

to the joint occurrence, which perhaps is not 
unreasonable. This approach, endowed with the 
name stochastic logic by Gaines[l 1], has not 
been pursued in this paper, however. 

We can interpret the number (21) as the lar- 
gest fraction of the committee that ever can be 
found to endorse the combination w , ,  w2 . . . . .  w , ,  

r,, ,  r,2 . . . . .  r,,. In a similar vein, 

/z~.,(y) = sup /zw~(w~ A p.R,j (r~ 
~ 1 ,  w 2 , . . . ,  w n ,  j = l  j I 

r h  r 2  . . . . .  r n :  

_ E wir i 
Y -  E w  i 

may be interpreted as the greatest lower bound 
on the largest fraction of the committee that can 
be recruited to endorse y as the final rating for 
alternative A,. 

It is hoped that these two models bring out 
the difference between the two approaches. 
Which of the two methods is more preferable is 
at this point a matter of taste, more than any- 
thing else, in the absence of a more fundamental 
discussion. The second model, allowing the 
individual committee members the opportunity 
to express their opinions unequivocally, is 
slightly more to the liking of the authors. 

A disadvantage of the method using fuzzy 
sets is that owing to the possibilistic nature of 
the analysis, which has to leave room for each 
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al ternative,  a much  weaker  indication is ob- 
tained of the preferabi l i ty  of one al ternative 
over  the others.  In the case of  Example  2, for  
instance,  the present  method indicates no 
difference in preference  for  the al ternatives 1 
and 2, while the probabilistic method would 
distinctly favor  al ternative 1. Also in the case of 
Example  4, the probabilistic method identifies 
al ternative 2 as the preferred alternative much  
more  posit ively than the fuzzy  sets method.  
Looking  over  the ratings and weights as listed in 
Table 5, however ,  one wonders  whether  the 
distinction be tween  the three al ternatives is all 
that  clear-cut.  

An advantage of the method using the 
concept  of  fuzziness  is that it does not suffer 
f rom the biasing effect  noticed by  Kahne.  It  
appears  doubtful ,  however ,  that  this biasing 
effect  seriously affects the ou tcome of the final 
conclusion. 

The fuzzy  set method fur thermore  has the 
p roper ty  that if rectangular  membersh ip  func- 
tions are assumed for  the ratings and weights,  
the final rating also has a rectangular  mem-  
bership function. In the probabilistic approach,  
uni form distributions of  the ratings and weights 
result  in non-uniform distributions of the final 
ratings. Thus,  in the latter case,  'uni form uncer- 
ta inty '  in the initial data does not result in 
uni form uncerta inty in the final result. 

Example  3 of Section 5 demonst ra tes  that  in 
the fuzzy  sets approach,  the results of the 
analysis are sensitive to the a priori choice of 
the membersh ip  functions.  This is a common  
phenomenon  in applications of fuzzy  sets theory,  
and is of ten used to criticize the theory. The 
' commit tee  paradigm'  for  fuzzy  sets theory,  as 
described earlier in this section, may help to 
resolve this problem. 

Finally, an advantage of the method using 
fuzzy  weightings and ratings is that  it is com- 
putationally at tract ive as compared  to Kahne ' s  
method.  P rob lems  involving modera te  numbers  
of al ternatives and aspects  can easily be solved 
by hand, while larger problems can be dealt  with 
through the use of  a computer .  The Monte  Carlo 
method of Kahne ,  al though in terms of pro- 
gramming certainly much simpler than the 
present  approach,  normal ly  requires the use of  a 
compute r  also for  small problems,  involving 
substantial ly larger amounts  of  compute r  time. 

In conclusion, it appears  that  both  the method 
presented here and that p roposed  by  Kahne  
may  be useful  in tackling multiple object ive 
decision problems under  uncertainty.  Both me- 
thods have  as characteris t ic  feature  that  not 
only uncer ta inty in the ratings and weights can 
be handled, but  that also an indication is ob- 

tained to what  extent  the initial uncer ta inty is 
still present  in the final evaluation. 
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APPENDIX: PROOFS OF THEOREMS 1-3 
In the following, the set {1, 2 . . . . .  n} will be 

denoted as N. We first give an e lementary  proof  
of  Theorem 1. A well-known device f rom non- 
linear programming is employed.  The problem 

maximize ~,/~,(x,), subject  to f ( x )  = y, 
i=1 

is equivalent  to the problem 

(A.I) 

maximize z, subject  to z ~</~,(xi), i E N, (A.2) 

and 
f ( x )  = y. 

In the latter problem (z, x,, x2 . . . . .  x,)  is the 
independent  variable. If  ($,)~) solves the second 
problem,  then ~ solves the first. We first s tudy 
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the second problem. Let the point x E R" sa- 
tisfy the conditions (i), (ii), and (iii) of Theorem 

1, and define 2 = i~ /.L,(£). We consider the point 
i , : l  

(z ,x )=(2 +6z,.~ +6x), and determine 6 z E R  
and 3x ER" such that the constraints z <~/~,(x,), 
i ~  N, and f (x)= ~ are satisfied to first order. 
Since according to (i) the functions ~, and f are 
differentiable at .~, while from (ii) ~ = ~ , ( £ ) ,  
i E N, and f(~) = ~, it follows that 

,~z <~ t.L',(£)6x, for i c N, (A.3) 

n 

f,(.~)6x, = 0. (A.4) 
i = = l  

Define 8~,=f,(£)6x,,  i E N .  According to (i). 
f , ( .~)~0 for each i, so that 3x, = 6~:,/f,(~) and 
(A.3) and (A.4) may be rewritten in the form 

8 z < ~ o , ~ ,  f o r i ~ N ,  (A.5) 

5£ = 0. (A.6) 
i I 

If 8x #- 0, it follows from (A.6) that 6~j > 0 for at 
least one value j E N, and 6sq < 0  for at least 
one other value of k in the same set. Since from 
(iii) the quantity ~'d£)/f,(Yc) is nonzero and does 
not change sign on N, we have either 

From this fact and (A.5) it follows that ~Sz < 0. 
which shows that the point (L-f) is a strict 
relative maximum point of the problem (A.2). 
As a result, the point .~ satisfying the conditions 
of Theorem I is a strict relative maximum point 
of the problem (A.1), which proves Theorem 1. 

The proof of Theorem 2 is trivial. Clearly the 
point # satisfies the constraint equation f ( . , ~ )  = ~. 

Also, ~ / ~ ( £ l =  M. There can be no point x* 
i I 

satisfying the constraint equation such that 

~ I~,(x~*)> M, since by definition ~;~ ~, (x , )~ M 
i I i I 

for all x E R". Therefore . . f  is a global maximum 
point of the problem (A.1). 

Theorem 3 is also easily proved. If v < y,,, or 
v > y ,  ...... then a n y x *  such t h a t f ( x * J = y  is not in 

S. As a result ,~{ #,(x,*)-O and also > , (y ) :~  0. 
t I 

If the supports of the membership functions ~,. 
i E N, are all intervals. S is a connected set. 
Since by hypothesis .f is continuous for each v 
with ym,,< 5' <Y ..... there exists according to 

n ' Bolza o s  theorem[14] an x * @ S  such that 

f ( x * ) =  y. Since p~y(y)>~ ~ ~t,(x,*)>0 it follows 

that p.~ (y) > 0. 


